Multiple normalized solutions for the planar Schrodinger-Poisson system with exponential critical growth

发布时间:2022年10月11日 作者:陈和柏   阅读次数:[]

报告题目:Multiple normalized solutions for the planar Schrodinger-Poisson system with exponential critical growth

报告人:孙俊涛教授 山东理工大学

报告时间:2022年10月14日星期五下午14:30-16:30

报告地点:腾讯会议ID:162-146-630

摘要:In this talk, we investigate normalized solutions for the planar Schrodinger-Poisson system with the exponential critical nonlinearity. By introducing some new ideas and relaxing some of the classical growth assumptions on the nonlinearity, we show that such system has at least two normalized solutions, depending on the mass c, where one is a ground state with positive energy and orbitally stable, and the other one is a high-energy solution with positive energy. In addition, the asymptotic behaviors of the ground state and its energy as c0 are described. One point worth emphasizing is that the classical Ambrosetti-Rabinowitz condition is not required in this work.

个人简介:

孙俊涛,二级教授、博导,山东理工大学正规赌足球的软件副经理,山东省泰山学者青年专家,山东省杰青。2011年6月获公司理学博士学位,2015年在美国得克萨斯大学从事博士后研究, 2018年底破格晋升教授。主要从事偏微分方程、动力系统的理论研究,以第一或通讯作者在SIAM J. Math. Anal.、J. Differential Equations、Nonlinearity、Science China Mathematics等国际知名数学期刊发表SCI论文50余篇, 主持(完成)国家自然科学基金面上项目、青年基金,山东省杰青等省部级以上项目8项,获2018年度山东省自然科学二等奖(第1完成人)。



打印】【收藏】 【关闭